3.28.5 \(\int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{7/2}} \, dx\) [2705]

3.28.5.1 Optimal result
3.28.5.2 Mathematica [C] (verified)
3.28.5.3 Rubi [A] (verified)
3.28.5.4 Maple [B] (verified)
3.28.5.5 Fricas [C] (verification not implemented)
3.28.5.6 Sympy [F]
3.28.5.7 Maxima [F]
3.28.5.8 Giac [F]
3.28.5.9 Mupad [F(-1)]

3.28.5.1 Optimal result

Integrand size = 28, antiderivative size = 160 \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{7/2}} \, dx=-\frac {2 (1-2 x)^{3/2} \sqrt {3+5 x}}{15 (2+3 x)^{5/2}}+\frac {82 \sqrt {1-2 x} \sqrt {3+5 x}}{135 (2+3 x)^{3/2}}+\frac {3896 \sqrt {1-2 x} \sqrt {3+5 x}}{945 \sqrt {2+3 x}}-\frac {3896}{945} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {164}{945} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

output
-3896/2835*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)- 
164/2835*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-2/ 
15*(1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(5/2)+82/135*(1-2*x)^(1/2)*(3+5*x)^ 
(1/2)/(2+3*x)^(3/2)+3896/945*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2)
 
3.28.5.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.62 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.60 \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{7/2}} \, dx=\frac {4 \left (\frac {3 \sqrt {1-2 x} \sqrt {3+5 x} \left (8303+24363 x+17532 x^2\right )}{2 (2+3 x)^{5/2}}+i \sqrt {33} \left (974 E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-1015 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right )\right )}{2835} \]

input
Integrate[((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(2 + 3*x)^(7/2),x]
 
output
(4*((3*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(8303 + 24363*x + 17532*x^2))/(2*(2 + 3 
*x)^(5/2)) + I*Sqrt[33]*(974*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - 
 1015*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])))/2835
 
3.28.5.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {108, 27, 167, 169, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{3/2} \sqrt {5 x+3}}{(3 x+2)^{7/2}} \, dx\)

\(\Big \downarrow \) 108

\(\displaystyle \frac {2}{15} \int -\frac {\sqrt {1-2 x} (40 x+13)}{2 (3 x+2)^{5/2} \sqrt {5 x+3}}dx-\frac {2 (1-2 x)^{3/2} \sqrt {5 x+3}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{15} \int \frac {\sqrt {1-2 x} (40 x+13)}{(3 x+2)^{5/2} \sqrt {5 x+3}}dx-\frac {2 \sqrt {5 x+3} (1-2 x)^{3/2}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 167

\(\displaystyle \frac {1}{15} \left (\frac {2}{9} \int \frac {268-85 x}{\sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}}dx+\frac {82 \sqrt {1-2 x} \sqrt {5 x+3}}{9 (3 x+2)^{3/2}}\right )-\frac {2 (1-2 x)^{3/2} \sqrt {5 x+3}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {1}{15} \left (\frac {2}{9} \left (\frac {2}{7} \int \frac {5 (1948 x+1259)}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {1948 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {82 \sqrt {1-2 x} \sqrt {5 x+3}}{9 (3 x+2)^{3/2}}\right )-\frac {2 (1-2 x)^{3/2} \sqrt {5 x+3}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{15} \left (\frac {2}{9} \left (\frac {5}{7} \int \frac {1948 x+1259}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {1948 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {82 \sqrt {1-2 x} \sqrt {5 x+3}}{9 (3 x+2)^{3/2}}\right )-\frac {2 (1-2 x)^{3/2} \sqrt {5 x+3}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{15} \left (\frac {2}{9} \left (\frac {5}{7} \left (\frac {451}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {1948}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )+\frac {1948 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {82 \sqrt {1-2 x} \sqrt {5 x+3}}{9 (3 x+2)^{3/2}}\right )-\frac {2 (1-2 x)^{3/2} \sqrt {5 x+3}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{15} \left (\frac {2}{9} \left (\frac {5}{7} \left (\frac {451}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {1948}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {1948 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {82 \sqrt {1-2 x} \sqrt {5 x+3}}{9 (3 x+2)^{3/2}}\right )-\frac {2 (1-2 x)^{3/2} \sqrt {5 x+3}}{15 (3 x+2)^{5/2}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{15} \left (\frac {2}{9} \left (\frac {5}{7} \left (-\frac {82}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {1948}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {1948 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {82 \sqrt {1-2 x} \sqrt {5 x+3}}{9 (3 x+2)^{3/2}}\right )-\frac {2 (1-2 x)^{3/2} \sqrt {5 x+3}}{15 (3 x+2)^{5/2}}\)

input
Int[((1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(2 + 3*x)^(7/2),x]
 
output
(-2*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(15*(2 + 3*x)^(5/2)) + ((82*Sqrt[1 - 2* 
x]*Sqrt[3 + 5*x])/(9*(2 + 3*x)^(3/2)) + (2*((1948*Sqrt[1 - 2*x]*Sqrt[3 + 5 
*x])/(7*Sqrt[2 + 3*x]) + (5*((-1948*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]* 
Sqrt[1 - 2*x]], 35/33])/5 - (82*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt 
[1 - 2*x]], 35/33])/5))/7))/9)/15
 

3.28.5.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 108
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))) 
, x] - Simp[1/(b*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f* 
x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && LtQ[m, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2 
*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 167
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Simp[1/(b*(b*e - 
a*f)*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b* 
c*(f*g - e*h)*(m + 1) + (b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h 
)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; FreeQ[{a, b, c, d, 
e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.28.5.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(242\) vs. \(2(116)=232\).

Time = 1.32 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.52

method result size
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (\frac {94 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{1215 \left (\frac {2}{3}+x \right )^{2}}+\frac {-\frac {7792}{189} x^{2}-\frac {3896}{945} x +\frac {3896}{315}}{\sqrt {\left (\frac {2}{3}+x \right ) \left (-30 x^{2}-3 x +9\right )}}+\frac {5036 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{19845 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {7792 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{19845 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {14 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{1215 \left (\frac {2}{3}+x \right )^{3}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(243\)
default \(-\frac {2 \left (17226 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x^{2} \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-17532 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x^{2} \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+22968 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-23376 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+7656 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-7792 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-525960 x^{4}-783486 x^{3}-164391 x^{2}+194358 x +74727\right ) \sqrt {1-2 x}\, \sqrt {3+5 x}}{2835 \left (10 x^{2}+x -3\right ) \left (2+3 x \right )^{\frac {5}{2}}}\) \(314\)

input
int((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(7/2),x,method=_RETURNVERBOSE)
 
output
(-(-1+2*x)*(3+5*x)*(2+3*x))^(1/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2 
)*(94/1215*(-30*x^3-23*x^2+7*x+6)^(1/2)/(2/3+x)^2+3896/2835*(-30*x^2-3*x+9 
)/((2/3+x)*(-30*x^2-3*x+9))^(1/2)+5036/19845*(10+15*x)^(1/2)*(21-42*x)^(1/ 
2)*(-15*x-9)^(1/2)/(-30*x^3-23*x^2+7*x+6)^(1/2)*EllipticF((10+15*x)^(1/2), 
1/35*70^(1/2))+7792/19845*(10+15*x)^(1/2)*(21-42*x)^(1/2)*(-15*x-9)^(1/2)/ 
(-30*x^3-23*x^2+7*x+6)^(1/2)*(-7/6*EllipticE((10+15*x)^(1/2),1/35*70^(1/2) 
)+1/2*EllipticF((10+15*x)^(1/2),1/35*70^(1/2)))-14/1215*(-30*x^3-23*x^2+7* 
x+6)^(1/2)/(2/3+x)^3)
 
3.28.5.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.68 \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{7/2}} \, dx=\frac {2 \, {\left (135 \, {\left (17532 \, x^{2} + 24363 \, x + 8303\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - 34253 \, \sqrt {-30} {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 87660 \, \sqrt {-30} {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )\right )}}{127575 \, {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} \]

input
integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="fricas")
 
output
2/127575*(135*(17532*x^2 + 24363*x + 8303)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqr 
t(-2*x + 1) - 34253*sqrt(-30)*(27*x^3 + 54*x^2 + 36*x + 8)*weierstrassPInv 
erse(1159/675, 38998/91125, x + 23/90) + 87660*sqrt(-30)*(27*x^3 + 54*x^2 
+ 36*x + 8)*weierstrassZeta(1159/675, 38998/91125, weierstrassPInverse(115 
9/675, 38998/91125, x + 23/90)))/(27*x^3 + 54*x^2 + 36*x + 8)
 
3.28.5.6 Sympy [F]

\[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{7/2}} \, dx=\int \frac {\left (1 - 2 x\right )^{\frac {3}{2}} \sqrt {5 x + 3}}{\left (3 x + 2\right )^{\frac {7}{2}}}\, dx \]

input
integrate((1-2*x)**(3/2)*(3+5*x)**(1/2)/(2+3*x)**(7/2),x)
 
output
Integral((1 - 2*x)**(3/2)*sqrt(5*x + 3)/(3*x + 2)**(7/2), x)
 
3.28.5.7 Maxima [F]

\[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{7/2}} \, dx=\int { \frac {\sqrt {5 \, x + 3} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="maxima")
 
output
integrate(sqrt(5*x + 3)*(-2*x + 1)^(3/2)/(3*x + 2)^(7/2), x)
 
3.28.5.8 Giac [F]

\[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{7/2}} \, dx=\int { \frac {\sqrt {5 \, x + 3} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate((1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="giac")
 
output
integrate(sqrt(5*x + 3)*(-2*x + 1)^(3/2)/(3*x + 2)^(7/2), x)
 
3.28.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{3/2} \sqrt {3+5 x}}{(2+3 x)^{7/2}} \, dx=\int \frac {{\left (1-2\,x\right )}^{3/2}\,\sqrt {5\,x+3}}{{\left (3\,x+2\right )}^{7/2}} \,d x \]

input
int(((1 - 2*x)^(3/2)*(5*x + 3)^(1/2))/(3*x + 2)^(7/2),x)
 
output
int(((1 - 2*x)^(3/2)*(5*x + 3)^(1/2))/(3*x + 2)^(7/2), x)